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Homomorphisms of Knot Groups on Finite Groups

By Robert Riley

Abstract. We describe trial and error computer programs for finding certain homo-
morphisms of a knot group on a special projective group LF(2, p), p prime, and programs
to evaluate H,(91; Z) where 9 is a finitely sheeted branched covering space of S* associated
with such a homomorphism. These programs have been applied to several collections of
examples, in particular to the Kinoshita-Terasaka knots, and we state numerous conjectures
based on these experiments.

About forty years ago a universal method for obtaining algebraic invariants of
knot type was proposed and became standard. The method, as applied to a knot k
of type K and having group =K = m,(S* — k; *), begins with the determination of
the homomorphisms of 7K on a given group G. These homomorphisms fall into
equivalence classes under the action of the automorphisms of G, and a crude pre-
liminary invariant of K is the number of homomorphism classes. In the next stage
of the method, we fix a transitive permutation representation of G, perhaps of infinite
degree. Each homomorphism class of 7K on G is associated with a covering space
U of S* — k such that the number of sheets in the covering is the degree of the
permutation representation, and the group H;(U; Z) is an algebraic invariant of the
knot type K. In this paper, we shall discuss the means and results of implementing
the universal method on a computer when the group G is chosen to be one of the
special projective groups L, = LF(2, p) = PSL(2, p), where p is a prime integer.

The universal method has been most thoroughly examined in the case where the
group G is cyclic. The determination of the homomorphism classes becomes com-
pletely trivial, and all the homology invariants can be deduced from a single matrix,
the Alexander matrix. These “cyclic invariants™ have been applied with good effect
to just about every problem in knot theory, but, alas, when the Alexander polynomial
A(x) of the knot reduces to the constant 1 these invariants degenerate and are
worthless. It is no good choosing a solvable group for G in such a case; to' get useful
results from the universal method, we must use nonsolvable groups. Of course,
simple groups receive first consideration in this context, and of the families of classical
finite simple groups, the family {L,} is the most manageable. As further encourage-
ment for this study, the group L, is isomorphic to the alternating group 4s, and
R. H. Fox has shown in several papers ([5]is a good example) that the homomorphisms
of a knot group on 4, have some interesting applications. There are, however, very
few clues to suggest what the best method for finding homomorphisms on the special
projective groups could be. In addition, almost nothing is known about the homology
invariants of homomorphisms on noncyclic groups G. It therefore seems reasonable
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604 ROBERT RILEY

to explore the subject initially by applying the most humble methods to a large
number of examples. This leads directly to the development of computer programs
to do the work and to large tables of output data. These are the subject of this paper.

Our method for finding the homomorphisms of a knot group #K on a finite
group G is simple trial and error. Suppose that =X is given to us in the form

) K =[x, o % i@ =r@ = - = 1],

Leta = (a,, - -+ , a,) be a set of elements of G which together generate G. The assign-
ment x; — a;, fori = 1, -+ , n, can be extended to a homomorphism 6: 7K — G
such that (x,)0 =4, if and only if r,(a) = r.(a) = --- = 1. Hence the determination
of the homomorphisms (and later their arrangement into classes) is a finite process.
But before we actually carry out this process éven on a computer, we should find
ways of reducing the number of experiments to the irreducible minimum. When the
presentation (0) is an over-presentation (see [5] or [7]), the generators x; are all
conjugate in wK. This is such a great aid to the classification that we use only over-
presentations for knot groups. In Section 4, we discuss a version of the over-
presentation that is especially well adopted to our methods and programs.

In Section 2, we determine the irreducible set of experiments needed to determine
the homomorphism classes of #K on A4, when n in (0) is 2 or 3. It turns out that there
are three possible kinds of such homomorphisms, and that the search for one kind
is much easier to describe and implement in a computer program than the others.
The characteristic property of these homomorphisms is that the image of an over-
generator of (0) is an element of order 5 in A,. In addition, we found that such
homomorphisms are more numerous than the others for our test cases. Hence, when
we generalize the A4; case to L, in Section 3, we restrict ourselves to the homo-
morphisms which carry an over-generator of =K to an element of order p in L,. We
call such homomorphisms “reps” for brevity, and note that the property of being a
rep is invariant, that is, it does not depend on the over-presentation (0) used in
the definition. In Section 5, we discuss how to implement the second stage of the
universal method on a computer when G is an arbitrary finite group. Our tools are
now ready.

In Section 6, we discuss the outcome of applying our programs to various collec-
tions of test cases. We have concentrated most of our effort on the groups G = L,
where p < 11, with the greatest emphasis on p = 5 because the results are all new
and the computation time per knot is still reasonable. The first set of test knots that
we discuss are the prime knots with at most 9 crossing points, conveniently drawn
on pp. 70-72 of Reidemeister [13]. We call these the classical knots and we have two
tables in the microfiche section for them. The first table is of over-presentations for
their groups which may be used as a standard reference by anyone doing computation
in knot theory. The second table is of the invariants of these knots associated with
their homomorphisms on 4, = L,. We state a large number of conjectures about
the homology invariants associated with reps of an arbitrary knot group on L, that
are backed up by numerous tables of data which are not all discussed here. We hope
that the reader shares the author’s faith that only a small amount of wit and dis-
crimination is needed to extract good conjectures from modest amounts of numerical
data in this subject. The homology invariants for a certain special sort of reps are
also discussed in Conjecture B, and we believe that this may be the best clue to the
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whole subject. The section ends with a discussion of three particular knots having
Alexander polynomial A(x) = 1, namely Seifert’s knot, the 11-crossing Kinoshita-
Terasaka knot [10], and a third 11-crossing knot discovered by J. Conway [2]. These
three knots are shown to have different types.

In Section 7, we demonstrate the power and limitations of our programs by
trying them on an infinite collection of knots that can be described by two integral
parameters. These knots were discovered by Kinoshita and Terasaka [10] and shown
to be nontrivial with A(x) = 1. We shall show that a homomorphism of the group
of one of these knots on A; determines a corresponding homomorphism for the
groups of an infinity of other knots whose integral parameters vary in certain arith-
metic progressions. If we vary one of these integral parameters in its progression, we
get interesting formulas for the corresponding homology invariants. If these formulas
were proven (but it is not worth the effort to do this), they would show that these
knots determine infinitely many types. As it is, we have only proven that they deter-
mine at least 200 types.

The work described in this paper has led to a later paper, “Parabolic representa-
tions of knot groups” that we are submitting for publication elsewhere. In it, we
prove that many of the knot groups discussed here have representations on subgroups
of LF(2, C), from each of which one can derive an infinity of reps on the groups L,.

I am indebted to Dr. G. Edmunds for his useful comments and constructive
criticism, and to Professor W. Magnus for his kind encouragement of this project
at a time when its continuation was in doubt.

1. Throughout this paper we shall use a standard notation for groups and homo-
morphisms taken from Huppert [9]. In particular, we write operators on the right
so that products of permutations are read from left to right, when x, y are elements
of a group x* = y 'xy,and G = (x,, - -- , X,) means that G is the group generated
by x1, -+, Xa.

All knots and knot types discussed in this paper are tame. We shall use the
notation k for a knot in %, K for its isotopy type, K’ for the isotopy type of a mirror
image of k and K for the type of k, i.e. two knots ki, k, in S° have the same type if
there exists an autohomeomorphism of S° such that a(k;) = k,. This notation is
obviously consistent with subscripts and we use it with the understanding that
mentioning any of k;, K;, K} or K; makes clear what the other symbols mean. The
group of a knot, m,(S® — k; *), depends only on K and we denote it =K. If T is the
boundary of a nice tubular neighbourhood of k and *7 is a point on T the group
m(T; *r) determines a conjugacy class of subgroups of =K, and =K with this con-
jugacy class specified will be called the marked group of K. The simplest way to mark
wK is to name a longitude commuting with a chosen over-generator of =K, in practice
always with the first named over generator.

Consider an over-presentation

(l) 7rK=|x1,"'9xn:rl"'°’rn-1|

of the knot group =K. Each relation »; = 1 can be written as x, = W~ 'x, W where
W &€ =K. We can use such a relation to eliminate the generator x, whenever W can
be written without using x,. By this means the original presentation (1) can be
changed to a new presentation of the same form as (1), but with a smaller number of
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generators n. Of course, the remaining generators are still over-generators of 7K so
they are still conjugate. We shall call such a presentation a normal presentation and
we shall use only normal presentations in this paper. In Section 4 we will describe
a modified version of a normal presentation which is more convenient in practice.

Among all the normal presentations of =K, there must be some written on the
least number of generators. If this least number is », then » depends only on K and
we denote it by »K = ». It is not hard to see that »K is the minimal bridge number
[14] of K, but we make no use of its known properties. We do not know how to
calculate »K; however, it is usually possible to find its true value by inspection even
when there is no proof available. »K must not be confused with the minimal number
of generators for vK. For example, when K is a torus knot, this minimal number of
generators is 2, but »K can be arbitrarily large [14, Satz 10].

The only knot K with vK = 1 is the trivial knot K = 0. The class of knots K with
vK = 2 has been completely classified in [15] and differently in [2]. These knots are
also known as rational knots (Viergeflechte) and they are all of alternating type.
There is probably no reasonable scheme to classify the knots with »K = 3. A wild
knot K would have vK = =,

Let 7K be a knot group, G a group, and consider the various homomorphisms
6, 05, --- of =K on G. We shall say that 6, is equivalent to 6,, in symbols 8, = 8,,
when there exists an automorphism w of G such that 6, = 6,0. We shall also say
that 6, is weakly equivalent to 6, if there is an automorphism « of =K such that
0, = af,. Because the determination of the automorphism group of a knot group is
an unsolved and presumably very knotty problem, we are forced to use equivalence
much more than weak equivalence.

Let G be a group of permutations of the numbers 1, --- , n. We will write the
elements g of G as permutations in two different ways. In the first way, we write
[a,, --- , a,] for the element g € G such that i-g = a;, fori =1, --- , n. In the
second way, we write g as a product of disjoint cycles.

(2) g = (bll’ blz’ ttt bl r;)(bﬁl’ b22; MY b2 r.) e (bcl; b.z, MY bc r.)
where r, + 7, + -+ + r, = n, b;;g = b; ;.. (second index (mod ;)), and each of
1, ---, n occurs in exactly one cycle. We shall omit cycles of length 1 from (2), and

when s = 1 we shall also omit the parentheses. In fact, we shall omit the commas
from both representations wherever possible, e.g. [23451] = 12345. We shall write E
for the identity [123 --- n].

2. Let 7K be a knot group presented by a normal presentation (1) onn = 2 or 3
generators. In this section, we shall reduce the problem of classifying the equivalence
classes of homorphisms of 7K on A; to a reasonable number of experiments, viz. 3
when n = 2, and 93 when n = 3. We begin with some assertions about 45 which are
best proven by direct calculation.

The group A; has 60 elements, viz. 1 of order 1, 15 of order 2, 20 of order 3 and
24 of order 5. All the elements of a given order except 5 are conjugate and the
elements of order 5 lie in two conjugacy classes. If C € A, has order 5, then « is
conjugate to C, C~' but not to C*, C~>. The automorphism group of 4; is the sym-
metric group S; acting by conjugation, viz. let a € Sy, g € A4, then ga = g*. All the
elements of A5 of a given order are equivalent under the action of S;. The maximal
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subgroups of A, are the stabilizers of a symbol 1, --- , 5 (these subgroups are
isomorphic to A4,), and dihedral groups of order 10. If two elements of 45 commute,
they either lie in a cyclic subgroup or they have order 2 and lie in the stabilizer of a
symbol.

In this section, § always means a homomorphism of 7K on A;. Since the over-
generators of wK in any normal presentation (1) are all conjugate, the elements
x;0 € A;s all have the same order, say r. If y, is a generator in a second normal
presentation of K, then y, is conjugate to x, or x;', therefore y,0 has order r. This
means that the number 7 depends only on 6 and not on the presentation, and this
allows us to define the order of 6 as r. Equivalent homomorphisms obviously have
the same order, so that the problem of classifying the various homomorphisms is
split into three cases. From now on, we assume that the number of generators » in
the normal presentation (1) is 2 or 3.

If 6 has order 5, then x,0 is a 5-cycle in A;. For some a € S, o '(x,0)a =
12345 = C so that 6 is equivalent to a homomorphism 6, such that x,8, = C. We
may assume § = 6,. Next, x,0 is one of the 12 elements of 4; conjugate to C. These
are C, C™', and 10 other elements which do not commute with C. These 10 elements
lie in two sets, each of 5 elements, on which conjugation by C is a cyclic permutation.
If one of these elements is @, then {C7aC' | j = 0, --- , 4} is one set and
{Cia™'C'| j=0, -, 4} is the other. Thus, x,0 = C, C"}, or the automorphism
of A4;, defined by conjugation by a suitable power of C, carries x,6 to « or «~*. Hence,
we may assume x,0 = C, C™', a or a”'. No automorphism of A4, that leaves C fixed
carries a to o™, so that two homomorphisms 6,, 8,, thus normalized with x,0, 5 x,0,,
are inequivalent. If n = 2, then (C, x,0) = A; so that x,0 = « or a~*. We shall fix
the element « to be (13254) = [35214].

Suppose n = 3 and x,0 = C*', We can apply the above argument to x;0 and get
x30 = a or a '. However, if x,0 = a*' then (C, x,0) = A; so that the only auto-
morphism which leaves x,0 and x,8 fixed is the identity. This means that x;6 can be
any of the 12 elements conjugate to C and that two homomorphisms normalized so
X0, = %10, = C, x50, = X,0, = o*', but x;68, # x;0,, are inequivalent. Hence, when
n = 3 the original homomorphism 6 is equivalent to a homomorphism defined by one
of 2-2 4+ 2-12 = 28 choices for the images of x,, x,, Xs.

Now let 8 be a homomorphism of order 3. We may assume x,6 = 123. We have
two cases, either 123 and x,0 generate 4;, or they do not. If they do, then x,8 cannot
leave 4 or 5 fixed and therefore x,0 = a45 or a54 wherea = 1,2 or 3. When x,0 = a54,
the automorphism defined by (45) & S; leaves 123 fixed and transforms a54 to a45,
so that 6 may be replaced by an equivalent homomorphism (still called) § where
x,0 = a45. If « is a suitable power of 123, then a45 = 145 so that we may finally
assume x,6 = 145. Note that (123, 145) = A, and that this argument shows that if 8
is a 3-cycle moving both 4 and 5 then (123, 8) = 4;.

When n = 2 we must have (x,8, x,6) = 4; so that the normalized homomorphism
can only be x,6 = 123, x,6 = 145, However, when n = 3 and 6,, 6, are two homo-
morphisms thus normalized, then 6, = 6, < x36, = x,0,. Therefore, our original 6
is equivalent to a homomorphism defined by one of 20 choices for the images of
X1, X3, X3 When (x,0, x,0) = A;.

Next, suppose that 6 is a homomorphism of order 3 such that x,6 = 123 and
(123) < (x:0, x,0) < As. Then x,0 must move at least one of 4, 5, but not both.
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If x,6 moves 5, the automorphism defined by (45) € S; transforms 6 to an equivalent
homomorphism such that x,6 moves 4, therefore, we can assume x,6 moves 4. Now
X320 = ab4 where a and b are 1, 2, 3. We wish to normalize 6 so that a = 1, in which
event x,0 = 124 or 134, If a # 1 already, the appropriate automorphism is defined
by lac € S; where ¢ = 2 or 3 as a = 3 or 2, It is easy to check that if x,6, = x,0, =
123, x,0, = 124, x,0, = 134, then 6, £ 6,. Furthermore, (123, 124) = (123, 134) =
the subgroup of A; leaving 5 fixed. This subgroup is maximal so that if { is a 3-cycle
moving 5 then (x,0, x,0, {) = As. When n = 3, x36 must be one of these 12 3-cycles
¢ = ab5. There is no freedom in the choice of 6 in its equivalence class left to move
X30, so that two homomorphisms 8,, 6, normalized so that x,6, = x,6, = 123,
X280, = x,0, = 124 or 134, but x;6, ¥ x;0,, are inequivalent. Therefore, our original 8
is equivalent to a homomorphism defined by oné of 2-12 = 24 choices for the images
of x;, X3, X; when n = 3, 0 has order 3, and (x,0) < (x,0, x,0) < As.

Finally for order 3 assume that x,0 = 123 or 132. Then (123, x;0) = A5 and the
normalization argument above shows that we may replace § by a new 6 such that
x30 = 145. Our original 8 is equivalent to a homomorphism defined by one of 2
choices for the images of x;, x;, Xa.

Last and least we consider homomorphisms of order 2. It is well known (and
easy to check for A4;) that a nonabelian group generated by two elements of order 2
is dihedral, hence such homomorphisms do not exist for n = 2. We omit the case by
case argument for n = 3 and simply tabulate the results in Table 1 at the end which
summarizes the discussion of this section.

Now that we have a normal form for each equivalence class of homomorphisms
we can test for the existence of each equivalence class of homomorphisms by testing
the assignments x,0, - - - , x,0 of its normal form to see if 6 actually defines a homo-
morphism, as remarked in the introduction.

3. We now generalize in a naive manner some of the results of the last section to
a classification of homomorphisms of knot groups on the linear projective groups
L, = LF(2, p) = PSL(2, p) where p is a rational prime. For L, = 4, we found that
the easiest case to handle was the homomorphisms of order 5. Accordingly, we shall
fix our attention on the homomorphisms of order p on L,, and for brevity, we shall
call such a homomorphism a “rep”. We refer to Chapter XIV of Burnside [1] for
the relevant background. The group L, is somewhat exceptional so we shall assume
p is an odd prime in the classification arguments that follow.

The group L, has order p-(p® — 1)/2 and is simple except when p = 3 where
L, ~ A,. It contains p> — 1 elements of order p and these lie in two conjugacy classes.
If @ € L, has order p, then « is conjugate to " iff n is a square (mod p). If 8 also has
order p, either 8 = «" for some n or (&, 8) = L,. All elements of order p are either
powers of a or lie in one of p — 1 orbits of p elements under conjugation by a. The
only automorphisms of L, that leave o fixed are conjugations by powers of «. For
any pair 8,, 8, of elements of order p there is an automorphism ¢ of L, such that
B2 = Bif.

Let (1) be a normal presentation of the knot group =K and assume the number of
generators n is 2 or 3. To begin the classifications of the reps of =K on L,, we fix
a € L, of order p and alter each rep by an automorphism of L, so that the image of
x, is a. Next, consider the (p — 1)/2 orbits of elements of order p which are conjugate
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to a. If we choose an element «; in the jth of these for j = 1, --- , (p — 1)/2, then
every element g of order p which is not a power of « has the form 8 = a™"«a;d’ for
some j and some s. This means that every rep 6 can be altered so that x,0 = a,
x,0 = o for some s or x;0 = «; for some j. When n = 2 the equivalence class of 8
is completely determined by j.

When n = 3, we have two cases. If x,0 = «; for some j, then (x,0, x,6) = L, so
that the equivalence class of 6 is completely determined by j and x,6. However, if
x,0 = o for some s, (s/p) = 1, then we can alter 6 by an automorphism of L, so
that x;0 = «; for some j. In this event, the equivalence class of 8 is determined by
s and j.

This shows that when n = 2 the equivalence classes of reps can be found by
(p — 1)/2 experiments and when n = 3 by

p—1p" —1 (p—l)z_ (17--12
2 2 T\ =@+2 2)

experiments. The method generalizes immediately to n > 3 generators and the general
formula for the number of experiments is

(p—l)""(p+1)“‘—1
2 D

We can determine the existence of reps on the solvable groups L, and L; from
the Alexander polynomial Ax(x) of K. Since L, is dihedral of order 6, the argument
of Section 10 of [6] shows that wK has a rep on L, iff 3 divides Ax(—1). By a variation
of this argument, we can show 7K has a rep on L; iff 2 divides Ag(w) Ax(@) where w
is a nonreal cube root of 1. (This strange number is the product of the ‘““Torsionszahlen
dritter Stufe” in Reidemeister [13] which are tabulated there on p. 25 for the classical
knots. We note that his table is wrong for the knots 9, and 9,, the entries in both
cases under 2 = 3 should read 2, 2. The rest of his table is correct.)

As a first hint that there is a better way to find reps, we will show that some
knots have a rep on L, for every prime p. Let M be the group SL(2,Z), then every L,
is a homomorphic image of M. Furthermore, the image of (; }) in L, is an element
of order p. This means that it is sufficient to find a homomorphism 6 of =K on M
such that x,6 = (; }). The elements 4 = (; )and B = (_} ) are conjugate and generate
M, in fact BAB = C=(_}), AB = (! }) = D, and we know from Section 1.4,
Exercise 19, of [11], that M = (C, D). Using the presentations in Table 2, we find
the following homomorphisms 6 of 7K on M such that x,6 = (;

K X.0 x50

1 0
3091, 9,93 (=2 ( 1 )

( 1 0) (1 1)
83, 818, 91.3 ""l 1 0 l

(1 1) ( 1 0)
8155 8215 924 0 1 -1 1

(continued)



610 ROBERT RILEY

(=)

K x20 x30
( 1 o) ( 1 o)
80 -1 1 -1 1
( 1 'o) ( 3 4)
818, 923 -1 1 -1 -1

-
L)

810’ 815’ 818’ 910 )

Ly G

The above list is complete up to equivalence for the classical knots. Because a neces-
sary condition for such a homomorphism 6 on M is the existence of a rep on L, for
every p, the nonexistence of other 6 follows from the above mentioned table in
Reidemeister or from Table 3 in the microfiche section in this issue.

(=)
—

N

|
o =
O =

—

4. If (1) is a normal presentation of 7K on a small number n of generators, the
relators are frequently very long words in x,, - - - , x,. For example, for some rational
knots with 9 crossings, the relator is a word in x;, x, of length > 100. This difficulty
can be avoided by introducing new generators X,.;, :-: , X., and new relations
expressing x,,; as @ word in x;, +++ , Xp4-1, for i = n 4 1, --- , m. The resulting
presentation of 7K now has the form:

generators X, - - , X,
(€)) relations  x,.; = wordin x;, +** , Xpei—, i =1, -+- ,m — n,
relators (X1, oot s Xm)y t s Faca(X1y t 0y X

This is still a normal presentation on n generators x,, * -+ , x, and much more con-
venient in practice. Note that the subordinate generators x,.,, * -+ , X,, are arbitrary
elements of 7K and not necessarily over generators of X.

If one is given a model knot k for K, a presentation (3) is defined implicitly by
orienting k and selecting » arcs of the picture to correspond to x,, - -« , x,. Next, the
other arcs are numbered n + 1, - -+ , m in such a way that at one end arc() is crossed
by an arc(i) with i < j and on the other side of arc(i) the continuation of arc(i) is
arc(s) withs < j,j=n+ 1, -- -, m. (This rule is stated for the Wirtinger presentation,
but for an over-presentation for a nonalternating knot the rule is only slightly more
complex. See the example below.)

Presentation 7K = |x;, X,, X3 : 74, 73

-1

Xy = X3 Xz X3,

-1 -1
X5 = X3z Xg X; Xg X3,

_ -1 _-1
rn = X5 X1 Xo Xy,

_ -1 _-1 _-1
Fz = X4 X1 Xg X3 Xg X

longitude x, x; x, X3 X1 X2 X4 X5 X1 -
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FIGURE 1

Table 2 in the microfiche section of this issue is a list of normal présentations of
the marked groups of the classical knots. These presentations have been checked in
numerous ways and are almost certainly correct. Table 3 of homomorphisms of
these knot groups on A4, is based on Table 2.

5. Associated with a homomorphism 6 of a knot group =K on a finite group G
are certain topological spaces whose homotopy types are invariants of the knot type
K. In particular, suppose G is a transitive group of permutations of the symbols
1, .-+, s, and let H be the subgroup of 7K whose image in G keeps the symbol 1
fixed. Let <u be the covering space of S* — k corresponding to the subgroup H, then
L is a noncompact s-sheeted covering manifold of S* — k. Furthermore, as explained
in Section 8 of [6], U has a certain natural closure 9 which is a compact manifold
known as the s-sheeted cover of S°® branched over k (belonging to H). The spaces
U, I are the topological spaces in question, they depend (up to homeomorphism)
only on =K, the permutation representation of the group G, and the weak equivalence
class of 6. In particular, their integral homology groups H,U = H,(U; Z), HM =
H,(91; Z) are invariants of K. A general algorithm to compute integral presentation
matrices for these homology groups is informally derived in Section 8 of [6] as a
consequence of a presentation for the fundamental groups =, U, =IM.

We have translated this algorithm into a Fortran subroutine, Homology, which
goes into action given a presentation (2) and the images of the generators {x,6, i =
1, .-+, n} expressed as permutations. It returns the groups H,U, H,I as Betti
numbers and torsion coefficients. The subroutine has the same generality as the
original algorithm (except for practical limitations) and so can be used to study more
general groups than knot groups. A more complete description and a listing of
Homology have been deposited in the UMT file; cf. the review in the review section
of this issue.

To apply Homology to a homomorphism 6 of =K on L,, p prime, we need a
permutation representation for L,. The different permutation representations of L,
will give rise to different spaces U, 91, but the smaller the number of sheets s, the
smaller the presentation matrices for H,u, H,9n. It is known ([1] or [9]) that L,
always has a permutation representation of degree p 4+ 1 but none of lower degree,
except for p = 5, 7, 11, where there are representations of degree p. So for all p # 5,
7, 11, we restrict our attention to the representation of degree p + 1 but forp = 5, 7,
11 we shall use both representations. When =K, p and 6 are understood, we shall
write Uy .1, Myyy, WU, N, for the corresponding covering spaces.
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For the exceptional primes 5, 7, 11, we took particular permutation groups of
degree p for the groups L,. For p = 5, we used 4, as discussed in Section 2. For
p = 7, we took the elements «a, o, as, as Of Section 3 to be

o = (1234567), o = (1675243), a, =ai, a3 = aj.
This representation of L, is taken from p. 208, line 5 of [1]. We took the elements
a, {a;,j=1,---,5} for L,, to be

a = (123456789ab), B = (1a)3TN(S6)(8NQ2)(B), a; = '8, j=1,---,5.

This representation came from 7.8 of [3]. In addition, for p = 5, 7, we wrote out
specific isomorphisms between the above permutation groups and permutation
groups of degrees 6, 8 resp. We may someday do the same for p = 11.

For the nonexceptional primes p, we find it convenient to deal with the groups L,
directly as matrix groups and derive our permutations from the matrices. Our work
in this direction is not complete except for the primes p < 19.

Given the permutation group G of degree s and the homomorphism 8 of 7K on
G, suppose that x,8 has ¢ disjoint cycles. Then, as Professor Fox shows, the number
of generators for 7,91 (and consequently for H;9) is bounded above by ns — ne —
(s — 1); cf. [7]. When this bound is 0, 9 is a homotopy sphere. When »K = 2 this is
true for 9N, when @ is a rep on L, [7] and for 9, when 6 is a homomorphism of order
3 on A4;. Consequently, we do not compute H,U, H;91 in these cases. When the upper
bound is 1, m9M = H,9 is cyclic and this happens for G = L,, vK = 3, and for
G = Lg, vK = 2. (The number c is always 2 for the permutation representation of
L, of degreep + 1.)

The space U can be considered as the complementary space of thelink / = 9 — U
in M. The link type of / in 9N is an invariant of the knot type K and the group H,U
is only the crudest of a set of link invariants of / analogous to the Alexander poly-
nomials and the Hosokawa polynomial [8]. We have not pursued this matter beyond
the calculation (by hand) of one specific example. The rational knot 5, has a homo-
morphism of degree 3 on A; (Table 3), consequently 915 is a homotopy sphere and /
is a link in this sphere. We found that the Alexander matrix of / (in one variable x)
reduces to

a3 O l
0 afyll’

wherea =1 — x,8 =1+ xand v = 1 + x + x* + x* + x*. Consequently, the
Hosokawa polynomial is V(x) = 8°y.

Gx) =

6. The algorithms of the preceding sections have been completely or partially
coded as Fortran programs and put to work on up to 250 knots. In this and the next
section we consider the results. They fill quite a few tables, some rather lengthy,
so we will include just one in microfiche and merely discuss the conclusions to be
drawn from the rest.

In this and the next section, we describe a homology group H,X = H\(X; Z) by
the diagonal entries of a square presentation matrix for H,X. If convenient, some of
these entries may be 1. When the coefficient group is not Z, it will be Z, = Z/nZ for
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some n. For example, H,.X = 0, 1, 3 means H\X = Z @ Z,, and if H,X = 3 then
H(X;Z,) = 1.

We begin with the reps on L,. After this paper was submitted for publication,
the paper ‘“Metacyclic invariants of knots and links” by R. H. Fox appeared in
Canad. J. Math., v. 22, 1970, pp. 193-201, and parts of that paper are very relevant
to our work. In the first place, Fox points out that the longitudes of a knot group =K
~ lie in the second commutator subgroup of =K, hence if 6 : 7K — G where G is a
group whose second commutator subgroup is trivial, the longitudes are in the kernel
of 6. This applies when G = L, or L, and supersedes a more cumbersome argument
of mine. Secondly, Fox includes a table (which agrees with mine) of the groups H 91,
associated with the reps of the groups of the classical knots on L,. More interesting
is the linking number v of the two components of 91t; — U, for each rep which Fox
includes in his table. Although I do not know how to calculate v, I found on com-
parison with one of my tables that in certain cases there seems to be a strict relation
between v and a number I can calculate. Namely, if 6 is a rep of 7K on M = SL(2, Z)
where x,6 = (5 1), and ¥ € 7K is a longitude commuting with x,, then 6 necessarily
has the form =+(5 {) for some g € Z. In fact, g = 0 (mod 6) because the image of v
in L, or L, is E. Then, in the 15 cases where Fox’s homomorphism is the mod 2
reduction of such a homomorphism on M, we have

E = +3v.

The sign depends on the normalizations and we cannot settle it here. This relation
is probably at the heart of the reason why in all known cases v is a rational fraction
with an even numerator.

For A = Ls, we tabulate the detailed results for the classical knots in Table 3
in microfiche. All permutations in that table are in the bracket [ ] notation. There
are altogether 51 reps, 26 homomorphisms of order 3, and 9 of order 2, for a
total of 86 homomorphisms. There are 30 knots with no homomorphism of which
only s, 9a3, 93, are not rational. Five knots, viz. 9,6, 922, 925, 930, 936, are proven
nonrational by the number or types of their homomorphisms but not by any simpler
method that I know. Most of the nonamphicheiral knots are proven to be such by
Fox’s argument [5].

The cases p = 7 and p = 11 have been run on the computer for the classical
knots. We found 102 reps on L, for these knots and that 27 knots have no rep, of
which 6 are not rational. The maximal number of reps for any knot is 13 for 9,, and
these appear to lie in 6 weak equivalence classes. There are 100 reps on L,, and 29
knots with no reps, 8 of these are not rational, This time the maximal number of
reps per knot is only 5, attained for K = 9,,, 9,, and 9.

This is as far as we have gone for the block of classical knots and as far as we
have computed the homology. We have gone further to find at least one rep on some
L, for every classical knot. The largest prime needed for the first rep was 23 which
was required for 7; and 8,,. All the nonrational knots, save 9,3, have a rep on L, for
p = 11, but for 9,3 we need p = 17.

Out of the detailed results of the calculation of around 1000 homology groups
H,u,, H,, we have found three general conjectures that appear certain, and two
more which are very likely. The discussion splits naturally into the cases k = p + 1,
h = p, and we exclude p = 2 because 2 is quite exceptional in this context. As
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notation, write B(U,), B(O1,) for the Betti numbers of U,, IMN,, respectively. We begin
withh = p + 1.
Conjecture A. If §isarep and p = 3,

B(,41) + 2 2 B(Up41) = BOW,.0) + 1,

and when B(91L,.,) = 0, B(U,.,) = 2. Furthermore H,91,., has a torsion generator
of even order.

The usual value for B(N,.,) is zero. We know that H,91,., is a factor group of
H,,,, but ap'art from that and Conjecture A there seems to be no further universal
assertion to be made about the comparison of H,U,,, with H,91,.,. However, when
6 happens to be the reduction of a homomorphism on M the situation is much
clearer. We have: '

Congjecture B. For each prime p = 2, there are integers b, and d,, where d, is a
divisor of p + 1, which have the following properties. Let 6 : xK — L, be the
reduction modulo p of a homomorphism ¢ : #K — SL(2, Z) such that x,¢ = (; ).
Let the torsion subgroups of the corresponding homology groups H,WU,.:, H:I,.,
have orders u, m, respectively. Then, B(ON,.,) = b, and m/u is an integer which
divides d,. If B()0,.,) = b,, then m/u = d,.

We have verified this when p < 19 for the homomorphisms on M listed in Section
3. The numbers b,, d, for p < 19 are

p 2 3 5 7 11 13 17 19
b, 0 0 0 0 2 0 2 2
d, 1 2 2 4 2 14 6 10

It should be emphasized that Conjecture B only concerns the orders u, m of the
torsion subgroups, not the relations between the actual torsion coefficients. The
tables show that the passage from U to 91 will do the wildest things to these torsion
numbers, subject to the known or conjectured restrictions. We have also considered
the question of patterns in the groups H,U,.:, H9N,., for a fixed K and varying p
(corresponding to a homomorphism on M), but the results are too vague to be
commented on here.

There is a conjecture similar to conjecture 4 for the groups H,Us, H M4 corre-
sponding to a homomorphism of order 2 or 3 on Ly = A5. For order 3, the conjecture
is the same as Conjecture A, and for order 2 the only change is

B(1e) + 1 = B(Us) = BOW,) + 4.

In all known cases, B(1s) = 0, B(Us) = 4, but this is not a conjecture.

Now for the groups H,U,, H9, when p = 5,7 or 11. We only discuss the cases
where 6 is a rep because the other cases are very different.

Conjecture C.If 0 : xK— L,isarep and p = 5,7 or 11 then B(U,) = BOW,) + 1.
IfHU,=0,a, - ,a,withl<a < a,<--- < a,thenforsome j & {1, ---,n},
Hlmp =@y, v, PAjy Q.

In Conjecture C the torsion number a; may or may not be already divisible by p.
The hypothesis B(U,) = 1 is essential.

The two minor conjectures are that if H,U, = 0, a,, - - - , a, as in Conjecture C,
then 3 divides a, when p = 5 and 2 divides a, when p = 7. The evidence for these is
quite strong, but because there is no corresponding rule for p = 11, we hesitate to
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be too dogmatic about them. As an example, the knot 7, has a unique rep on L,,,
and Hltuu = 0, Hlmu = 11.

To conclude this section, consider the three knots of Fig. 2, of interest because
they have Alexander polynomial A(x) = 1. The knot k, is

N Y
’ /\/’\/’\JD
g () Y

FIGURE 2

Seifert’s classical example of such a nontrivial knot. The knot k, was constructed by
Kinoshita and Terasaka [10] and further studied in [12]. The knot k; was discovered
by J. Conway [2] in his classification of the nonalternating 11 crossing knots. He has
shown that k, and k; are the only 11-crossing knots with A(x) = 1. (In Conway’s
notation, k, = .—(2, 3).2 and k; = .—(3, 2).2.) We first try the homomorphisms
on As.
K, x,0 = (12345), x,0 = (15432), x30 = (14523).

Hl‘ll.;, = 0, 2, 6. Hlms = 2, 30. chu,g = 0, 0, 2, 4. Hlma = 2, 2, 16.
K, x,0 = (123), x,0 = (145), x30 = (123), (longitude) § = E.
K;  x,0 = (123), x,0 = (145), x;0 = (142), (longitude) § = E
For both X, and K;:

Hl‘ll,5 = 0’, 0, 0. Hlml = 7. Hltu,e = 0, 0, 12. Hlma = 180.

This shows that all three knots are nontrivial and that K is different from the

other two. We have not yet shown K, # K. It is possible that the deeper Alexander
invariants of the link 9 — U in 9% can do that, but I bet not.

We now try reps on L, for K, and K,. For convenience, write C = (1234567).
Each rep satisfies x,0 = C and each knot has two reps.

x20, = (1675243), x,0, = (1452736), (longitude) 6, = C.
Hltu-1 = 0, 4, 28. H1m7 = 28,28. qu-ls = 0, 0, 3. Hlms = 1920.

Il

K,
X260, = C, x50, = (1675243), (longitude) 6, =
HU, = 0,2,238. H,9M, = 14,238. H,U3 = 0,0,6. H,N = 3, 228.
x,0, = (1675243), x50, = (1723654), (longitude) 6, = C
Hltu-7 = O, 2, 2, 4, 12. H1m7 = 2, 2, 4, 84. Hltu-s = 0, 0, 4, 24.
N HOM = 4, 8, 24.
& .
X0, = C, x30, = (1264735), (longitude) 4, = C*.
chuﬂ = 0’ 29 2, 8, 40. H1m7 = 2, 2, 8, 280. Hltu.s = 0, 0, 2, 36,
H, I, = 2,6, 324,
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This shows that K, > K, and that neither knot is amphicheiral. The results for L,,
are very similar: two reps per knot but the groups H,U,,, H\91,; prove the knots
are different.

We tried to prove that K, ¥ K, by counting the reps on L, for p = 13, 17, 19, 23,
29 and 31 to see if there was ever a difference between the corresponding numbers
for K, K;. (This experiment took more than 3} hours on the Southampton computer.)
The results suggest the 7K; and xK; have the same number of reps on L, for every
prime p and that these knots cannot be distinguished this way. In [12], Magnus and
Peluso proved that =K, has reps on L, for an infinity of p, but because they only
netted a small proportion of the true set of reps their results cannot help us. We hope
to return to this question in a later paper.

7. One of the best ways to understand the behavior of our knot invariants is to
calculate them for a family of knots where the presentations of the knot groups
depend on integral parameters. As a final collection_of examples, we consider the
rather complicated family of Kinoshita-Terasaka (KT) knots. The KT knot «(p, n)
is drawn in Fig. 3 in the case

8 /K“/

T,
6(/\“ "”(\be
*’”Q/

9
FIGURE 3. «(p, n)

where p and n are positive integers. When n < 0, the sense of rotation in the integral
tangle (winding) v is reversed. In [10] Kinoshita and Terasaka proved that «(p, n)is a
nontrivial knot with Alexander polynomial A(x) = 1if p = 2 and n > 0.* Obviously,
k(p,n) = 0if p = 0 or 1 or if n = 0. The knot K, of the last section is «(2, 1).

We may also define «(p, n) for p < 0 by reversing the sense of rotation in the
tangles e, B, §, ¢ in Fig. 3. (Beware that 6 and e now have |p| — 1 = |[(p + 1)| cross-
ings.) If we turn the knot over and reflect in a mirror, we see «(p, n) = «(p, —n).
Furthermore, we can turn the knot over and apply the Edmunds Flip to show «(p, n) =
«(—p — 1, n) for all p, n. This allows us to assume p is even and » > 0 from now on.

Let =(p, n) be the group of «(p, n). Since we have taken p even, we may write

= 2py, p+ = Po + 1. Then =(p, n) has a normal presentation (4) of the form
|%1, X2, X3 : 7y, 75| Where

* Our «(p, n) is written «(p, 2n) in [10].
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a =X, X xe =a" xa" Xs=a" xa
_ -1 -1 _ - —_ -
B =xi xs xs = B x. 77 x; =" xs 877
-1 n -n
@) Y = Xe X Xg = 79U X1
6= Xy Xg X9 = & Xg 8" X0 = & Xg R
-1 -1 -
€= X X3 X1 = €° Xo€ *°
— -1 _ -1
r = X5 X0 r: = X7 X11

Suppose for some fixed (p, n) that «(p, n) has a homomorphism 6 of order s on 4.
Say that the elements a8, 88, v0, 86, €8 of A5 have orders a, b, g, d, e, respectively.
Let g be thel.c.m. of a, b, d, e, and let x;0 = {;, i = 1, 2, 3. From (4) it is easy to see
that the assignment x;¢ = ¢;, i = 1, 2, 3, defines a homomorphism ¢ of «(p’, n’) of
order s on A; whenever p = p’ (mod 2g) and n = n’ (mod g). Because «(p, 0) = 0 we
must have g = 2, and because «(0, n) = k(—2, n) = 0 we must have 2g = 6 (in fact
'2g is 30 or 60 in every case). We shall say that the homomorphisms 6 and ¢ are in
the same clan of homomorphisms ©.

Because the numbers g and ¢ for a clan of homomorphisms must be divisors of
30, we know in advance that infinitely many KT knots have no homomorphisms on
As. C]early, the same difficulty will occur whatever finite (nonabelian) group G we
may use in place of A;. Therefore, if we wish to resolve all the different types among
the KT knots, we must either use an infinite group G or an infinite set of ﬁmte groups
{G,,v=1,2,---}.

We can show however, that infinitely many of the knots (p, n) are different by
considering the homology groups H,W,, H9M,, h = 5, 6, associated with a clan of
homomorphisms ®. We examined a number of these clans and found by looking
at 10 to 40 cases that these homology groups can usually be predicted by simple
formulas. We must admit we have not tried to prove these formulas—the groups
are complicated and the presentation matrices are rather large. However the method
of proof (a giant calculation!) is clear and the results stated below should be con-
vincing as they are. (Sceptics might try a simpler case of a clan ® where the knots
are alternating torus knots.) We present our formulas for five cases which illustrate
most of what we should expect.

I x,0 = (123), x,0 = (123), x;6 = (145) when p = 2 (mod 30), n =1 (mod 3).
Since k(p, n) = x(p, —n), this clan also allows » = 2 (mod 3), but using the standard
normalization of 8 in its equivalence class we then write it x,6 = (123), x,0 = (145),
X0 = (235). Whenp = 2andn = 3s + L:

$

HU5=0,0,0. HM;= |7+ 24s|. H,Us=0,0,12. H,M; = |180 + 648s].

IL x,0 = (12345), x,0 = (13254), x;6 = (15324) when p = 2 (mod 30),
n=2 (mod 5). When n = 3 (mod 5), we normalize 8 to x,0 = (14523), x50 = (15324).
(ThlS clan is one of three clans of reps which exist for the same set of (p, n). ) When

= 2writen = 5s+2 r=2ifll § 5,7 = 221f11 | s,

H1‘115 = 0, 2, 18. H1m5 = 2, 90. Hltue = 0, 0, T. H,ST(,G = IIIOO + 2616S|o

II1. x,0 = (12)(34), x,0 = (12)(35), x30 = (13)(25) when p = 4 (mod 30),
n = 1 (mod 3). For n = 2 (mod 3) we write x,0 = (13)(24), x;6 = (12)(35). When
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p=4,n=3s+ land r = |78 4+ 240s| we get:
HU5 =0,0,0, 7. HN; = 7. H,Y4 = 0,0,0,0, 2. H\N = 4.

IV. x,60 = (12)(34), x,0 = (13)(24), x:60 = (14)(25) when p = 2 (mod 30),
n = 2 (mod 5). For n = 3 (mod 5) we write x50 = (13)(25), x;6 = (15)(34). When
p = 2 the groups are:

H]cll5 = 0, O, O, 3. H1m5 = 3. H]cue = O, 0, 0, 0. Hlmg = 2.

V. x,0 = (123), x,0 = (134), x;6 = (135) when p = 4 (mod 60), n = 1 (mod 2).
(This clan is one of four such which lie in pairs, the corresponding homology groups
for the homomorphisms in a pair being the same.) When p = 4 write n = 2s + 1,
p=18|s+ 1],and let r = 9if 3|s, 7 = 3if 3 f s. Then:

H; =0,0,0, 7. HIM; =2, p.
H, = 0, 0, a(s), b(s) where a(s) = 47(s), b(s) = 1 when s is even, b(s) = 4 if
s = 1 (mod 4), and b(s) = 2 if s = 3 (mod 4). HIMs = c(s), d(s), t(s)
where ¢(s) = 3 if s is even, ¢(s) = 2, otherwise, and d(s) = 1 if s is even, d(s) = 3-b(s)
otherwise. The final summand #(s) varies so wildly that I cannot guess a formula for it.

Table 1. The images x,0, x,0, x,0 of the generators of a normal presentation on
three generators for the equivalence classes of homomorphisms on A4;. See Section 1
for the [ ] notation.

I. Order 5. x,6 = [23451]. 28 combinations
x,0 = [35214] or [43152]. x30 = [23451], [51234], or one of
[35214], [41532], [54213], [31524], [54132],
[43152], [25413], [43521], [24153], [35421].
x,0 = [23451] or [51234]. x;0 = [35214] or [43152].
II. Order 3. x,0 = [23145]. 46 combinations
x,0 = [42351]. x30 = any 3-cycle.
x,0 = [24315] or [32415]. x30 = any 3-cycle which moves 5.
x30 = [23145] or [31245]. x;0 = [42351].
III. Order 2. x,0 = [21435]. 19 combinations
x,6 = [21543]. x,0 = one of [35142], [32154], [34125], [42513],
[45312], [52431].
x,0 = [35142]. x36 = one of [21543], [21354], [34125], [32154],
[43215], [45312], [53241], [52431],
[14523], [15432].
x,0 = [34125]. x3;0 = one of [21543], [35142], [45312].
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Table Three
The. mmi-- on A’ of the n?t groups in table two,
together with the eo}nopondin. homology groups
TR TRLE O fx"'
Each homomorphise is defined by the permutetions which are)
the. images of the “"independest”™ over generstors. The image

of x; is inferred From the order of the hwm,'phh-.
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Steen, Byrne, and Gelberd recently ¢ibliahed tables of waights
and sbecisess for the sveluation by (sussien quadrsturs ot integrsla

of the fors:
- 2
() [oc(.)g.p(-- )dx

which erfse in l‘uch‘r wsactor design calculstions. Similar {ntegrals,
except with ¢ Meawellisp veighting !uac-tbton .(‘)“-2“?(_'2) rather

" thea their Boltemana weight, occur frequently in atomic end uloculof
colltptu pr;yl‘-. Although these integrals could ba regerded as

'cmlol cased of (1), better comvergence csn he ebtajimed frrm quadrsture
fermulae explicitly tekiag ifato eccount the addftional facter 3.’ an
part of the veight l;u.cuoa. Table I of this nota givas abscissese and

weighte fer N point Geussian quadretures of the forw:
(2) Io “z.lp(-lz)l(l)dl

These were obteined in the usual woyz from the (non-claesficel)
polynoumials P.(:) orthogonal on (0,~) with reapect to w(x),
utiquely defined by teking rotl)-k and the following convention

for recursion:

(3) 'Nl(') - (No‘)"(l) + al"ﬂl(')

Of eeverel numsricsl techaiques favestigated for detersining

these polyacuials the one suffering laast from loes of uumericel



