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Homomorphisms of Knot Groups on Finite Groups 

By Robert Riley 

Abstract. We describe trial and error computer programs for finding certain homo- 
morphisms of a knot group on a special projective group LF(2, p), p prime, and programs 
to evaluate H1(=; Z) where M is a finitely sheeted branched covering space of S3 associated 
with such a homomorphism. These programs have been applied to several collections of 
examples, in particular to the Kinoshita-Terasaka knots, and we state numerous conjectures 
based on these experiments. 

About forty years ago a universal method for obtaining algebraic invariants of 
knot type was proposed and became standard. The method, as applied to a knot k 
of type K and having group 7rK = 7r1(S3 -k; *), begins with the determination of 
the homomorphisms of wrK on a given group G. These homomorphisms fall into 
equivalence classes under the action of the automorphisms of G, and a crude pre- 
liminary invariant of K is the number of homomorphism classes. In the next stage 
of the method, we fix a transitive permutation representation of G, perhaps of infinite 
degree. Each homomorphism class of 7rK on G is associated with a covering space 
c% of S3 - k such that the number of sheets in the covering is the degree of the 
permutation representation, and the group H&(Ut; Z) is an algebraic invariant of the 
knot type K. In this paper, we shall discuss the means and results of implementing 
the universal method on a computer when the group G is chosen to be one of the 
special projective groups L, = LF(2, p) = PSL(2, p), where p is a prime integer. 

The universal method has been most thoroughly examined in the case where the 
group G is cyclic. The determination of the homomorphism classes becomes com- 
pletely trivial, and all the homology invariants can be deduced from a single matrix, 
the Alexander matrix. These "cyclic invariants" have been applied with good effect 
to just about every problem in knot theory, but, alas, when the Alexander polynomial 
A(x) of the knot reduces to the constant 1 these invariants degenerate and are 
worthless. It is no good choosing a solvable group for G in such a case; to get useful 
results from the universal method, we must use nonsolvable groups. Of course, 
simple groups receive first consideration in this context, and of the families of classical 
finite simple groups, the family IL,4 is the most manageable. As further encourage- 
ment for this study, the group L4 is isomorphic to the alternating group AS, and 
R. H. Fox has shown in several papers ([5] is a good example) that the homomorphisms 
of a knot group on A5 have some interesting applications. There are, however, very 
few clues to suggest what the best method for finding homomorphisms on the special 
projective groups could be. In addition, almost nothing is known about the homology 
invariants of homomorphisms on noncyclic groups G. It therefore seems reasonable 
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604 ROBERT RILEY 

to explore the subject initially by applying the most humble methods to a large 
number of examples. This leads directly to the development of computer programs 
to do the work and to large tables of output data. These are the subject of this paper. 

Our method for finding the homomorphisms of a knot group irK on a finite 
group G is simple trial and error. Suppose that irK is given to us in the form 

(0) 7rK = IxI, * n, x r1(x) = r2(x)= a = i. 

Let a = (al, * * *, aJ) be a set of elements of G which together generate G. The assign- 
ment xi -* ai, for i = 1, * * *, n, can be extended to a homomorphism 0: 7rK - G 
such that (x,)@ = ai if and only if r,(a) = r2(a) = = 1. Hence the determination 
of the homomorphisms (and later their arrangement into classes) is a finite process. 
But before we actually carry out this process even on a computer, we should find 
ways of reducing the number of experiments to the irreducible minimum. When the 
presentation (0) is an over-presentation (see [5] or [7]), the generators xi are all 
conjugate in 7rK. This is such a great aid to the classification that we use only over- 
presentations for knot groups. In Section 4, we discuss a version of the over- 
presentation that is especially well adopted to our methods and programs. 

In Section 2, we determine the irreducible set of experiments needed to determine 
the homomorphism classes of 7rK on A, when n in (0) is 2 or 3. It turns out that there 
are three possible kinds of such homomorphisms, and that the search for one kind 
is much easier to describe and implement in a computer program than the others. 
The characteristic property of these homomorphisms is that the image of an over- 
generator of (0) is an element of order 5 in A,. In addition, we found that such 
homomorphisms are more numerous than the others for our test cases. Hence, when 
we generalize the A, case to L, in Section 3, we restrict ourselves to the homo- 
morphisms which carry an over-generator of irK to an element of order p in L,. We 
call such homomorphisms "reps" for brevity, and note that the property of being a 
rep is invariant, that is, it does not depend on the over-presentation (0) used in 
the definition. In Section 5, we discuss how to implement the second stage of the 
universal method on a computer when G is an arbitrary finite group. Our tools are 
now ready. 

In Section 6, we discuss the outcome of applying our programs to various collec- 
tions of test cases. We have concentrated most of our effort on the groups G = L, 
where p < 11, with the greatest emphasis on p = 5 because the results are all new 
and the computation time per knot is still reasonable. The first set of test knots that 
we discuss are the prime knots with at most 9 crossing points, conveniently drawn 
on pp. 70-72 of Reidemeister [13]. We call these the classical knots and we have two 
tables in the microfiche section for them. The first table is of over-presentations for 
their groups which may be used as a standard reference by anyone doing computation 
in knot theory. The second table is of the invariants of these knots associated with 
their homomorphisms on A, = L. We state a large number of conjectures about 
the homology invariants associated with reps of an arbitrary knot group on L, that 
are backed up by numerous tables of data which are not all discussed here. We hope 
that the reader shares the author's faith that only a small amount of wit and dis- 
crimination is needed to extract good conjectures from modest amounts of numerical 
data in this subject. The homology invariants for a certain special sort of reps are 
also discussed in Conjecture B, and we believe that this may be the best clue to the 
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whole subject. The section ends with a discussion of three particular knots having 
Alexander polynomial A(x) 1, namely Seifert's knot, the 11-crossing Kinoshita- 
Terasaka knot [10], and a third 11 -crossing knot discovered by J. Conway [2]. These 
three knots are shown to have different types. 

In Section 7, we demonstrate the power and limitations of our programs by 
trying them on an infinite collection of knots that can be described by two integral 
parameters. These knots were discovered by Kinoshita and Terasaka [10] and shown 
to be nontrivial with A(x) _ 1. We shall show that a homomorphism of the group 
of one of these knots on A, determines a corresponding homomorphism for the 
groups of an infinity of other knots whose integral parameters vary in certain arith- 
rnetic progressions. If we vary one of these integral parameters in its progression, we 
get interesting formulas for the corresponding homology invariants. If these formulas 
were proven (but it is not worth the effort to do this), they would show that these 
knots determine infinitely many types. As it is, we have only proven that they deter- 
mine at least 200 types. 

The work described in this paper has led to a later paper, "Parabolic representa- 
tions of knot groups" that we are submitting for publication elsewhere. In it, we 
prove that many of the knot groups discussed here have representations on subgroups 
of LF(2, C), from each of which one can derive an infinity of reps on the groups L,. 

I am indebted to Dr. G. Edmunds for his useful comments and constructive 
criticism, and to Professor W. Magnus for his kind encouragement of this project 
at a time when its continuation was in doubt. 

1. Throughout this paper we shall use a standard notation for groups and homo- 
morphisms taken from Huppert [9]. In particular, we write operators on the right 
so that products of permutations are read from left to right, when x, y are elements 
of a group xv 3 y-xy, and G = (x1, * , x") means that G is the group generated 
by x1,.* * *, X". 

All knots and knot types discussed in this paper are tame. We shall use the 
notation k for a knot in S3, K for its isotopy type, 1?' for the isotopy type of a mirror 
image of k and K for the type of k, i.e. two knots k1, k2 in S3 have the same type if 
there exists an autohomeomorphism of S3 such that a(kO) = k2. This notation is 
obviously consistent with subscripts and we use it with the understanding that 
mentioning any of ki, Ki, K' or Ki makes clear what the other symbols mean. The 
group of a knot, 7r1(S3 - k; *), depends only on K and we denote it irK. If T is the 
boundary of a nice tubular neighbourhood of k and *T is a point on T the group 
7r1(T; *T) determines a conjugacy class of subgroups of rK, and 7rK with this con- 
jugacy class specified will be called the marked group of K. The simplest way to mark 
7rK is to name a longitude commuting with a chosen over-generator of rK, in practice 
always with the first named over generator. 

Consider an over-presentation 

(1) irK = lxl, * * , x. : r * 

of the knot group rK. Each relation r, = 1 can be written as x, = W 1x, W where 
W E rK. We can use such a relation to eliminate the generator x8 whenever W can 
be written without using x.. By this means the original presentation (1) can be 
changed to a new presentation of the same form as (1), but with a smaller number of 
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generators n. Of course, the remaining generators are still over-generators of 7rK so 
they are still conjugate. We shall call such a presentation a normal presentation and 
we shall use only normal presentations in this paper. In Section 4 we will describe 
a modified version of a normal presentation which is more convenient in practice. 

Among all the normal presentations of rK, there must be some written on the 
least number of generators. If this least number is v, then v depends only on K and 
we denote it by vK = v. It is not hard to see that vK is the minimal bridge number 
[14] of K, but we make no use of its known properties. We do not know how to 
calculate vK; however, it is usually possible to find its true value by inspection even 
when there is no proof available. vK must not be confused with the minimal number 
of generators for 7rK. For example, when K is a torus knot, this minimal number of 
generators is 2, but vK can be arbitrarily large [14, Satz 10]. 

The only knot K with vK = 1 is the trivial knot K = 0. The class of knots K with 
vK = 2 has been completely classified in [15] and differently in [2]. These knots are 
also known as rational knots (Viergeflechte) and they are all of alternating type. 
There is probably no reasonable scheme to classify the knots with vK = 3. A wild 
knot K would have vK = co. 

Let rK be a knot group, G a group, and consider the various homomorphisms 
01, 02, * * * of 7rK on G. We shall say that 01 is equivalent to 02, in symbols 0_= 02, 

when there exists an automorphism X of G such that 02 = 01w. We shall also say 
that 0, is weakly equivalent to 02 if there is an automorphism a of rK such that 
02 a01. Because the determination of the automorphism group of a knot group is 
an unsolved and presumably very knotty problem, we are forced to use equivalence 
much more than weak equivalence. 

Let G be a group of permutations of the numbers 1, *., n. We will write the 
elements g of G as permutations in two different ways. In the first way, we write 
[al, .. , aJ for the element g E G such that i-g = a1, for i = 1, *., n. In the 
second way, we write g as a product of disjoint cycles. 

(2) g = (b1l, b12, * Do, bi t1)(b2l, b22, . , b2 r.) (bai, b.2, *, bs ,,) 

where r, + r2 + * * * + r, = n, b jig = bi j+1 (second index (mod r,)), and each of 
1, * * *, n occurs in exactly one cycle. We shall omit cycles of length 1 from (2), and 
when s = 1 we shall also omit the parentheses. In fact, we shall omit the commas 
from both representations wherever possible, e.g. [23451] = 12345. We shall write E 
for the identity [123 * * n]. 

2. Let 7rK be a knot group presented by a normal presentation (1) on n = 2 or 3 
generators. In this section, we shall reduce the problem of classifying the equivalence 
classes of homorphisms of 7rK on A, to a reasonable number of experiments, viz. 3 
when n = 2, and 93 when n = 3. We begin with some assertions about A, which are 
best proven by direct calculation. 

The group A, has 60 elements, viz. 1 of order 1, 15 of order 2, 20 of order 3 and 
24 of order 5. All the elements of a given order except 5 are conjugate and the 
elements of order 5 lie in two conjugacy classes. If C E A, has order 5, then a is 
conjugate to C, C` but not to C2, C-2. The automorphism group of A, is the sym- 
metric group S, acting by conjugation, viz. let a E S5, g E A,, then ga = g'. All the 
elements of A, of a given order are equivalent under the action of S5. The maximal 
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subgroups of A, are the stabilizers of a symbol 1, *., 5 (these subgroups are 
isomorphic to A4), and dihedral groups of order 10. If two elements of A, commute, 
they either lie in a cyclic subgroup or they have order 2 and lie in the stabilizer of a 
symbol. 

In this section, 0 always means a homomorphism of 7rK on A,. Since the over- 
generators of 7rK in any normal presentation (1) are all conjugate, the elements 
xi 0 C A, all have the same order, say r. If y, is a generator in a second normal 
presentation of rK, then y, is conjugate to xl or xl 1, therefore yO has order r. This 
means that the number r depends only on 0 and not on the presentation, and this 
allows us to define the order of 0 as r. Equivalent homomorphisms obviously have 
the same order, so that the problem of classifying the various homomorphisms is 
split into three cases. From now on, we assume that the number of generators n in 
the normal presentation (1) is 2 or 3. 

If 0 has order 5, then x1 0 is a 5-cycle in A,. For some a E S5, a&`(x 0)a = 

12345 = C so that 0 is equivalent to a homomorphism 01 such that xI 0 = C. We 
may assume 0 = 01. Next, x20 is one of the 12 elements of A, conjugate to C. These 
are C, C-', and 10 other elements which do not commute with C. These 10 elements 
lie in two sets, each of 5 elements, on which conjugation by C is a cyclic permutation. 
If one of these elements is a, then {CaCd I ]j = O .. , 4} is one set and 
IC'a1C' I I = 0, * * , 4} is the other. Thus, x:20 = C, C-1, or the automorphism 
of A,, defined by conjugation by a suitable power of C, carries x28 to a or a-. Hence, 
we may assume x20 = C, C-1, a or a-'. No automorphism of A, that leaves C fixed 
carries a to a1, so that two homomorphisms 01, 02, thus normalized with x201 F X20 

are inequivalent. If n = 2, then (C, x20) = As so that x20 = a or a-1. We shall fix 
the element a to be (13254) = [35214]. 

Suppose n = 3 and x20 = C"l. We can apply the above argument to X30 and get 
X30 = a or a-1. However, if x20 = atl then (C, x20) = A. so that the only auto- 
morphism which leaves x1 and x20 fixed is the identity. This means that X30 can be 
any of the 12 elements conjugate to C and that two homomorphisms normalized so 
x1 01 = xI 02 = C, x201 = x202 = CZaI, but x301 5 x302, are inequivalent. Hence, when 
n = 3 the original homomorphism 0 is equivalent to a homomorphism defined by one 
of 2.2 + 2.12 = 28 choices for the images of xI, x2, X3. 

Now let 0 be a homomorphism of order 3. We may assume x1 0 = 123. We have 
two cases, either 123 and x20 generate A5, or they do not. If they do, then x20 cannot 
leave 4 or 5 fixed and therefore x20 = a45 or a54 where a = 1, 2 or 3. When x20 = a54, 
the automorphism defined by (45) C S5 leaves 123 fixed and transforms a54 to a45, 
so that 0 may be replaced by an equivalent homomorphism (still called) 0 where 
x28 = a45. If a is a suitable power of 123, then a45' = 145 so that we may finally 
assume x20 = 145. Note that (123, 145) = As and that this argument shows that if ,3 
is a 3-cycle moving both 4 and 5 then (123, A) = A,. 

When n = 2 we must have (xI0, x20) = A5 so that the normalized homomorphism 
can only be x10 = 123, x20 = 145. However, when n = 3 and 01, 02 are two homo- 
morphisms thus normalized, then 01-- 02 * X3 01 = X3 02. Therefore, our original 0 
is equivalent to a homomorphism defined by one of 20 choices for the images of 
X1, X2, X3 when (xl0, x20) = A5. 

Next, suppose that 0 is a homomorphism of order 3 such that xi 6 = 123 and 
(123) < (x1@, x20) < A,. Then x20 must move at least one of 4, 5, but not both. 
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If x20 moves 5, the automorphism defined by (45) E S5 transforms 0 to an equivalent 
homomorphism such that x20 moves 4, therefore, we can assume x20 moves 4. Now 
x?0 = ab4 where a and b are 1, 2, 3. We wish to normalize 0 so that a = 1, in which 
event x20 = 124 or 134. If a $ 1 already, the appropriate automorphism is defined 
by lac E S5 where c = 2 or 3 as a = 3 or 2. It is easy to check that if x1G1 = x282 = 

123, x201 = 124, x202 = 134, then 01 $ 02. Furthermore, (123, 124) = (123, 134) = 
the subgroup of A, leaving 5 fixed. This subgroup is maximal so that if r is a 3-cycle 
moving 5 then (x1i, x20, 0) = A5. When n = 3, x30 must be one of these 12 3-cycles 
r = ab5. There is no freedom in the choice of 0 in its equivalence class left to move 
X3@, so that two homomorphisms 61, 02 normalized so that x101 = x202 = 123, 
x201 = x202 = 124 or 134, but x301 5 x302, are inequivalent. Therefore, our original 0 
is equivalent to a homomorphism defined by one of 2 12 = 24 choices for the images 
of x1, x2, x3 when n = 3, 0 has order 3, and (x10) < (x10, x20) < A,. 

Finally for order 3 assume that x20 = 123 or 132. Then (123, x38) = A, and the 
normalization argument above shows that we may replace 0 by a new 0 such that 
x30 = 145. Our original 0 is equivalent to a homomorphism defined by one of 2 
choices for the images of X1, X2, X3. 

Last and least we consider homomorphisms of order 2. It is well known (and 
easy to check for A,) that a nonabelian group generated by two elements of order 2 
is dihedral, hence such homomorphisms do not exist for n = 2. We omit the case by 
case argument for n = 3 and simply tabulate the results in Table 1 at the end which 
summarizes the discussion of this section. 

Now that we have a normal form for each equivalence class of homomorphisms 
we can test for the existence of each equivalence class of homomorphisms by testing 
the assignments x1 0, * *, x>0 of its normal form to see if 0 actually defines a homo- 
morphism, as remarked in the introduction. 

3. We now generalize in a naive manner some of the results of the last section to 
a classification of homomorphisms of knot groups on the linear projective groups 
Lp - LF(2, p) _ PSL(2, p) where p is a rational prime. For L4 = As, we found that 
the easiest case to handle was the homomorphisms of order 5. Accordingly, we shall 
fix our attention on the homomorphisms of order p on L,, and for brevity, we shall 
call such a homomorphism a "rep". We refer to Chapter XIV of Burnside [1] for 
the relevant background. The group L2 is somewhat exceptional so we shall assume 
p is an odd prime in Ehe classification arguments that follow. 

The group L, has order p (p2 - 1)/2 and is simple except when p = 3 where 
L3 ~ A4. It contains p2 _ 1 elements of order p and these lie in two conjugacy classes. 
If a E L. has order p, then a is conjugate to a' iff n is a square (mod p). If f3 also has 
order p, either $ = a' for some n or (a, j3) = L,. All elements of order p are either 
powers of a or lie in one of p - 1 orbits of p elements under conjugation by a. The 
only automorphisms of L, that leave a fixed are conjugations by powers of a. For 
any pair fB,, 02 of elements of order p there is an automorphism r of L, such that 
/2 = 1. 

Let (1) be a normal presentation of the knot group 7rK and assume the number of 
generators n is 2 or 3. To begin the classifications of the reps of 7rK on L,, we fix 
a EE L, of order p and alter each rep by an automorphism of L, so that the image of 
x1 is a. Next, consider the (p - 1)/2 orbits of elements of order p which are conjugate 
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to a. If we choose an element a1i in the ]th of these for j = 1, * * *, (p - 1)/2, then 
every element f3 of order p which is not a power of a has the form fi = a-'acaj for 
some j and some s. This means that every rep 0 can be altered so that x1 0 = a, 
x2 0 = a' for some s or x20 = ai for some j. When n = 2 the equivalence class of 0 
is completely determined by j. 

When n = 3, we have two cases. If x20 = a& for some j, then (x10, x20) = L, so 
that the equivalence class of 0 is completely determined by j and x3 0. However, if 
x20 = a' for some s, (s/p) = 1, then we can alter 0 by an automorphism of L, so 
that X3 0 = ai for some j. In this event, the equivalence class of 0 is determined by 
s and j. 

This shows that when n = 2 the equivalence classes of reps can be found by 
(p - 1)/2 experiments and when n = 3 by 

p -1p2 -I I I a-IMP -I +( 2) (P +2)( 

experiments. The method generalizes immediately to n > 3 generators and the general 
formula for the number of experiments is 

-p 1 (p + 1 
- 1 

2 p 

We can determine the existence of reps on the solvable groups L4 and L3 from 
the Alexander polynomial AK(X) of K. Since L2 is dihedral of order 6, the argument 
of Section 10 of [6] shows that 7rK has a rep on L2 iff 3 divides AK(- 1). By a variation 
of this argument, we can show 7rK has a rep on L3 iff 2 divides RK(W) AK(U) where W 
is a nonreal cube root of 1. (This strange number is the product of the "Torsionszahlen 
drifter Stufe" in Reidemeister [13] which are tabulated there on p. 25 for the classical 
knots. We note that his table is wrong for the knots 91 and 96, the entries in both 
cases under h = 3 should read 2, 2. The rest of his table is correct.) 

As a first hint that there is a better way to find reps, we will show that some 
knots have a rep on L, for every prime p. Let M be the group SL(2,Z), then every L, 
is a homomorphic image of M. Furthermore, the image of (1 1) in L, is an element 
of order p. This means that it is sufficient to find a homomorphism 0 of 7rK on M 
such that xi 0 = (1 1). The elements A = (' 1) and B = (_ ?) are conjugate and generate 
M, in fact BAB = C = (_? 1), AB = (_? 1) = D, and we know from Section 1.4, 
Exercise 19, of [11], that M = (C, D). Using the presentations in Table 2, we find 
the following homomorphisms 0 of 7rK on M such that x1 0 = (1 1). 

K X20 X30 

31, 91, 96, 923 (V 2) 21 1) 

8,,( 818, 91 co nI inue 

81sp 821# 924 0O 1/ V1 / 

(continued) 
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K X20 x30 

820 \-1 1J \- 01 0J 820(2 ) (2 ) 

818, 928 (2 I) (-I - ) 

81op 815, 818, 940 (-I I) (-1 I ) 

819 \- \1 2} 

The above list is complete up to equivalence for the classical knots. Because a neces- 
sary condition for such a homomorphism 0 on M is the existence of a rep on L" for 
every p, the nonexistence of other 0 follows from the above mentioned table in 
Reidemeister or from Table 3 in the microfiche section in this issue. 

4. If (1) is a normal presentation of 7rK on a small number n of generators, the 
relators are frequently very long words in xi, * * *, x". For example, for some rational 
knots with 9 crossings, the relator is a word in xl, x2 of length > 100. This difficulty 
can be avoided by introducing new generators x,+1, * , x", and new relations 
expressing x,,+i as a word in xl, * * *, x,+i-,, for i = n + 1, * , m. The resulting 
presentation of irK now has the form: 

generators xi, - . -, xm, 

(3) relations x"+, = word in xl, *, x+ li = 1, * *, m -n, 
relators rl(x1, I, Xm) , rn l(x1, , Xm). 

This is still a normal presentation on n generators xl, * * *, xn and much more con- 
venient in practice. Note that the subordinate generators Xn+19 ... , xm are arbitrary 
elements of irK and not necessarily over generators of 7rK. 

If one is given a model knot k for K, a presentation (3) is defined implicitly by 
orienting k and selecting n arcs of the picture to correspond to x1, . .. , xn. Next, the 
other arcs are numbered n + 1, * * * , m in such a way that at one end arc(j) is crossed 
by an arc(i) with i < j and on the other side of arc(i) the continuation of arc(i) is 
arc(s) with s < j, j = n + 1, * , m. (This rule is stated for the Wirtinger presentation, 
but for an over-presentation for a nonalternating knot the rule is only slightly more 
complex. See the example below.) 

Presentation 7rK = 1x1, X2, X3: r, r21 

_-1 
X4 X3 X2 X3, 

-1 -1 
X5 = X3 X2 XI X2 X3, 

-1 -1 
=i x5 xix2 X1 

-1 -1 -1 
r2= X4 X1 X2 X3 X2 X1 

longitude X2 X3 X1 X3 X1 X2 X4 X5 X1 
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FIGURE 1 

Table 2 in the microfiche section of this issue is a list of normal presentations of 
the marked groups of the classical knots. These presentations have been checked in 
numerous ways and are almost certainly correct. Table 3 of homomorphisms of 
these knot groups on A5 is based on Table 2. 

5. Associated with a homomorphism 0 of a knot group 7rK on a finite group G 
are certain topological spaces whose homotopy types are invariants of the knot type 
K. In particular, suppose G is a transitive group of permutations of the symbols 
1, - - *, s, and let H be the subgroup of rK whose image in G keeps the symbol 1 
fixed. Let cu be the covering space of S3 - k corresponding to the subgroup H, then 
ca is a noncompact s-sheeted covering manifold of S3 - k. Furthermore, as explained 
in Section 8 of [6], ca has a certain natural closure MZ which is a compact manifold 
known as the s-sheeted cover of S3 branched over k (belonging to H). The spaces 
qt 9Mz are the topological spaces in question, they depend (up to homeomorphism) 
only on irK, the permutation representation of the group G, and the weak equivalence 
class of 0. In particular, their integral homology groups HlCu 8 H,(cl; Z), H1r - 
H1(M; Z) are invariants of K. A general algorithm to compute integral presentation 
matrices for these homology groups is informally derived in Section 8 of [6] as a 
consequence of a presentation for the fundamental groups 7rclU, 7rMZ. 

We have translated this algorithm into a Fortran subroutine, Homology, which 
goes into action given a presentation (2) and the images of the generators {x, , i = 
1, *. , n} expressed as permutations. It returns the groups H191, H19Z as Betti 
numbers and torsion coefficients. The subroutine has the same generality as the 
original algorithm (except for practical limitations) and so can be used to study more 
general groups than knot groups. A more complete description and a listing of 
Homology have been deposited in the UMT file; cf. the review in the review section 
of this issue. 

To apply Homology to a homomorphism 0 of irK on L3, p prime, we need a 
permutation representation for L,. The different permutation representations of L3 
will give rise to different spaces %a, MZ, but the smaller the number of sheets s, the 
smaller the presentation matrices for Hca, H1MIZ. It is known ([1] or [9]) that L3 
always has a permutation representation of degree p + 1 but none of lower degree, 
except for p = 5, 7, 11, where there are representations of degree p. So for all p Z! 5, 
7, 11, we restrict our attention to the representation of degree p + 1 but for p = 5, 7, 
11 we shall use both representations. When irK, p and 0 are understood, we shall 
write 91,,+1, R'U, %l2Z3 for the corresponding covering spaces. 
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For the exceptional primes 5, 7, 11, we took particular permutation groups of 
degree p for the groups L4. For p = 5, we used A, as discussed in Section 2. For 
p = 7, we took the elements a, al, a2, a3 of Section 3 to be 

2 4 a = (1234567), al = (1675243), a2 = 01, a3 = a1 

This representation of L7 is taken from p. 208, line 5 of [1]. We took the elements 
a, {a,, j = 1, , 5} for LI, to be 

a = (123456789ab), $ = (la)(37)(56)(89)(2)(b), a; =3a, = = 1, *- 5. 

This representation came from 7.8 of [3]. In addition, for p = 5, 7, we wrote out 
specific isomorphisms between the above permutation groups and permutation 
groups of degrees 6, 8 resp. We may someday do the same for p = 11. 

For the nonexceptional primes p, we find it convenient to deal with the groups L4 
directly as matrix groups and derive our permutations from the matrices. Our work 
in this direction is not complete except for the primes p < 19. 

Given the permutation group G of degree s and the homomorphism a of 7rK on 
G, suppose that x1 has c disjoint cycles. Then, as Professor Fox shows, the number 
of generators for 7r1Z (and consequently for HMlZ) is bounded above by ns - nc - 

(s - 1); cf. [7]. When this bound is 0, MZ is a homotopy sphere. When PK = 2 this is 
true for Ml3 when 0 is a rep on L2 [7] and for ZS when 0 is a homomorphism of order 
3 on A,. Consequently, we do not compute Hllt, H1MZ in these cases. When the upper 
bound is 1, ir15iz = H1r is cyclic and this happens for G = L2, vK = 3, and for 
G = Ls, vK = 2. (The number c is always 2 for the permutation representation of 
L, of degree p + 1.) 

The space cu can be considered as the complementary space of the link I = - 

in MZ. The link type of I in MZ is an invariant of the knot type K and the group Hcu. 
is only the crudest of a set of link invariants of I analogous to the Alexander poly- 
nomials and the Hosokawa polynomial [8]. We have not pursued this matter beyond 
the calculation (by hand) of one specific example. The rational knot 5, has a homo- 
morphism of degree 3 on A, (Table 3), consequently ,5 is a homotopy sphere and I 
is a link in this sphere. We found that the Alexander matrix of I (in one variable x) 
reduces to 

af3 0 
a(X) = 0 ay 

where a = 1- x, 3 = 1 + x5 and -y = 1 + x + X2 + X3 + x4. Consequently, the 
Hosokawa polynomial is V(x) 

6. The algorithms of the preceding sections have been completely or partially 
coded as Fortran programs and put to work on up to 250 knots. In this and the next 
section we consider the results. They fill quite a few tables, some rather lengthy, 
so we will include just one in microfiche and merely discuss the conclusions to be 
drawn from the rest. 

In this and the next section, we describe a homology group HAX H,(X; Z) by 
the diagonal entries of a square presentation matrix for HlX. If convenient, some of 
these entries may be 1. When the coefficient group is not Z, it will be Z, = Z/nZ for 
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some n. For example, H1X = 0, 1, 3 means H1X = Z 0) Z3, and if H1X = 3 then 
H,(X; Z2) = 1. 

We begin with the reps on L. After this paper was submitted for publication, 
the paper "Metacyclic invariants of knots and links" by R. H. Fox appeared in 
Canad. J. Math., v. 22, 1970, pp. 193-201, and parts of that paper are very relevant 
to our work. In the first place, Fox points out that the longitudes of a knot group 7rK 
lie in the second commutator subgroup of rK, hence if 0: rK -+ G where G is a 
group whose second commutator subgroup is trivial, the longitudes are in the kernel 
of 0. This applies when G = L4 or L3 and supersedes a more cumbersome argument 
of mine. Secondly, Fox includes a table (which agrees with mine) of the groups H1=13 
associated with the reps of the groups of the classical knots on L4. More interesting 
is the linking number v of the two components of z3- -cl3 for each rep which Fox 
includes in his table. Although I do not know how to calculate v, I found on com- 
parison with one of my tables that in certain cases there seems to be a strict relation 
between v and a number I can calculate. Namely, if 0 is a rep of 7rK on M = SL(2, Z) 
where x10 = (G '), and By E 7K is a longitude commuting with xl, then zy0 necessarily 
has the form i:( 9) for some g E Z. In fact, g 0 (mod 6) because the image of So 
in L2 or L3 is E. Then, in the 15 cases where Fox's homomorphism is the mod 2 
reduction of such a homomorphism on M, we have 

A= 3v. 

The sign depends on the normalizations and we cannot settle it here. This relation 
is probably at the heart of the reason why in all known cases v is a rational fraction 
with an even numerator. 

For As = L,, we tabulate the detailed results for the classical knots in Table 3 
in microfiche. All permutations in that table are in the bracket [ ] notation. There 
are altogether 51 reps, 26 homomorphisms of order 3, and 9 of order 2, for a 
total of 86 homomorphisms. There are 30 knots with no homomorphism of which 
only 932, 933, 934 are not rational. Five knots, viz. 91, 6 922, 925, 93,, 936, are proven 
nonrational by the number or types of their homomorphisms but not by any simpler 
method that I know. Most of the nonamphicheiral knots are proven to be such by 
Fox's argument [5]. 

The cases p = 7 and p = 11 have been run on the computer for the classical 
knots. We found 102 reps on L7 for these knots and that 27 knots have no rep, of 
which 6 are not rational. The maximal number of reps for any knot is 13 for 940 and 
these appear to lie in 6 weak equivalence classes. There are 100 reps on L11 and 29 
knots with no reps, 8 of these are not rational. This time the maximal number of 
reps per knot is only 5, attained for K = 941, 947 and 948 

This is as far as we have gone for the block of classical knots and as far as we 
have computed the homology. We have gone further to find at least one rep on some 
L4 for every classical knot. The largest prime needed for the first rep was 23 which 
was required for 75 and 812. All the nonrational knots, save 93, have a rep on L, for 
p < 11, but for 933 we needp = 17. 

Out of the detailed results of the calculation of around 1000 homology groups 
Hlcuh, HlM,, we have found three general conjectures that appear certain, and two 
more which are very likely. The discussion splits naturally into the cases h = p + 1, 
h = p, and we exclude p = 2 because 2 is quite exceptional in this context. As 
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notation, write B('1t), B(YI) for the Betti numbers of Au,, (fml, respectively. We begin 
with h = p + 1. 

Conjecture A. If 0 is a rep and p ? 3, 

B(MW,+i) + 2 > B(cUl+1) _ B(Mz,+1) + 1, 

and when B(Mz,+1) = 0, B('a,,+1) = 2. Furthermore H1MY+1 has a torsion generator 
of even order. 

The usual value for B(Mlt,+1) is zero. We know that HMZ,+1 is a factor group of 
H1l,,+1, but apart from that and Conjecture A there seems to be no further universal 
assertion to be made about the comparison of Hlctt,+i with Hm%,Z+ 1. However, when 
o happens to be the reduction of a homomorphism on M the situation is much 
clearer. We have: 

Conjecture B. For each prime p > 2, there are integers b., and d,, where d., is a 
divisor of p + 1, which have the following properties. Let 0: irK -> L, be the 
reduction modulo p of a homomorphism A5: 7rK -+ SL(2, Z) such that xlO = (1 1). 
Let the torsion subgroups of the corresponding homology groups HlqcU+1, HlM+1 

have orders u, m, respectively. Then, B(n,+1) > b., and m/u is an integer which 
divides dX,. If B(Mz,+1) = b,, then mru = dz,. 

We have verified this when p < 19 for the homomorphisms on M listed in Section 
3. The numbers bX,, d., for p < 19 are 

p 2 3 5 7 11 13 17 19 

b, 0 0 0 0 2 0 2 2 

d, 1 2 2 4 2 14 6 10 

It should be emphasized that Conjecture B only concerns the orders u, m of the 
torsion subgroups, not the relations between the actual torsion coefficients. The 
tables show that the passage from cU to M will do the wildest things to these torsion 
numbers, subject to the known or conjectured restrictions. We have also considered 
the question of patterns in the groups HicU,+1, H1MTL+1 for a fixed K and varying p 
(corresponding to a homomorphism on M), but the results are too vague to be 
commented on here. 

There is a conjecture similar to conjecture A for the groups HNc11, H1M, corre- 
sponding to a homomorphism of order 2 or 3 on L, = A,. For order 3, the conjecture 
is the same as Conjecture A, and for order 2 the only change is 

B(M16) + 1 < B(c116) ? B(MZ6) + 4. 

In all known cases, B(MnZ6) = 0, B(cu16) = 4, but this is not a conjecture. 
Now for the groups HAuD, HMNzE when p = 5, 7 or 1. We only discuss the cases 

where 0 is a rep because the other cases are very different. 
Conjecture C. If 0: 7rK-> L. is a rep andp = 5,7 or 11 then B(C1L,) = B()zD) + 1. 

If H1clt, = OS al, * * * an with l ? a, ? a2 < < an then for some l, , 

H1(iZ, = al, * ,paj, ... , an. 
In Conjecture C the torsion number a, may or may not be already divisible by p. 

The hypothesis B(c9t) = 1 is essential. 
The two minor conjectures are that if H1ca. = 0, a,, * * * , an as in Conjecture C, 

then 3 divides an when p = 5 and 2 divides a. when p = 7. The evidence for these is 
quite strong, but because there is no corresponding rule for p = 11, we hesitate to 
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be too dogmatic about them. As an example, the knot 74 has a unique rep on L11, 
and Hlqt, = 0, H1Nlr = 11. 

To conclude this section, consider the three knots of Fig. 2, of interest because 
they have Alexander polynomial A(x) 1. The knot k, is 

N14 ~ ~ ~ ~ ~ ~ 

ki k2 'ka 

FIGuRE 2 

Seifert's classical example of such a nontrivial knot. The knot k2 was constructed by 
Kinoshita and Terasaka [10] and further studied in [12]. The knot k, was discovered 
by J. Conway [2] in his classification of the nonalternating 11 crossing knots. He has 
shown that k, and k., are the only I 1-crossing knots with A(x) 1. (In Conway's 
notation, k2 = .-(2, 3). 2 and k = . -(3, 2). 2.) We first try the homomorphisms 
on A,. 

K1 xl@ = (12345), x28 = (15432), x30 = (14523). 

H1c1ls = O 2, 6. H1iZ5 = 2, 30. H1'1L, = 0, 0, 2, 4. H1W6 = 2, 2, 16. 

K2 xl0 = (123), x20 = (145), x30 = (123), (longitude) 0 = E. 

K3 x10 = (123), x20 = (145), x30 = (142), (longitude) 0 = E. 

For both K2 and K3: 

H1Il, = 0, 0, 0. Hi Mlt = 7. H1'L. = 0, 0, 12. H1lT6 = 180. 

This shows that all three knots are nontrivial and that K1 is different from the 
other two. We have not yet shown K2 $ K3. It is possible that the deeper Alexander 
invariants of the link Z - it in ml can do that, but I bet not. 

We now try reps on L4 for K2 and K3. For convenience, write C = (1234567). 
Each rep satisfies xi 0 = C and each knot has two reps. 

X201 = (1675243), x301 = (1452736), (longitude) 0l = C. 

Hl117 = 0, 4, 28. H1OT7= 28,. 28. Hl'8 = 0, 0, 3. H1lZ8 = 1920. 
K2IHC2 

x202 = C, x382 = (1675243), (longitude) 02 = C2. 

H 117 = 0, 2, 238. H1lZ7 = 14, 238. Hll8 = 0, 0, 6. H1rZ8 = 3, 228. 

x201 = (1675243), x301 = (1723654), (longitude) 01 C. 

H117 = 0, 2, 2, 4, 12. HjYZ7 2, 2, 4, 84. H1'1L8 = 0, 0, 4, 24. 

HlZ8 = 4, 8, 24. 

3 X202 = C, X302 = (1264735), (longitude) 01 = C2. 

H1'117 = 0, 2, 2, 8, 40. H1X%7 = 2, 2, 8, 280. H1'1L8 = 0, 0, 2, 36. 

HjMZ8 = 2, 6, 324. 



616 ROBERT RILEY 

This shows that K1 # K3 and that neither knot is amphicheiral. The results for L11 
are very similar: two reps per knot but the groups Hictll1, H1W11 prove the knots 
are different. 

We tried to prove that K2 $ K; by counting the reps on L, for p = 13, 17, 19, 23, 
29 and 31 to see if there was ever a difference between the corresponding numbers 
for K2, K3. (This experiment took more than 3- hours on the Southampton computer.) 
The results suggest the rK2 and rK3 have the same number of reps on L, for every 
prime p and that these knots cannot be distinguished this way. In [12], Magnus and 
Peluso proved that irK2 has reps on L, for an infinity of p, but because they only 
netted a small proportion of the true set of reps their results cannot help us. We hope 
to return to this question in a later paper. 

7. One of the best ways to understand the behavior of our knot invariants is to 
calculate them for a family of knots where the presentations of the knot groups 
depend on integral parameters. As a final collection-of examples, we consider the 
rather complicated family of Kinoshita-Terasaka (KT) knots. The KT knot K(p, n) 
is drawn in Fig. 3 in the case 

2n 

P <! P+ ~ ( 
p+I_/70 3\fWe 

FIGURE 3. K(p, n) 

where p and n are positive integers. When n < 0, the sense of rotation in the integral 
tangle (winding) Sy is reversed. In [10] Kinoshita and Terasaka proved that K@, n) is a 
nontrivial knot with Alexander polynomial A(x) =-1 if p > 2 and n # 0.* Obviously, 
K(p, n) = 0 if p = 0 or 1 or if n = 0. The knot K( of the last section is K(2, 1). 

We may also define Kp, n) for p < 0 by reversing the sense of rotation in the 
tangles a, ,B, 3, e in Fig. 3. (Beware that a and e now have pI - 1 = I(p + 1)1 cross- 
ings.) If we turn the knot over and reflect in a mirror, we see K(p, n) = K(p, -n). 
Furthermore, we can turn the knot over and apply the Edmunds Flip to show K(J, n) = 
K(-p - 1, n) for all p, n. This allows us to assume p is even and n > 0 from now on. 

Let ir(p, n) be the group of K(P, n). Since we have taken p even, we may write 
p = 2pog p =po + 1. Then 7r(p, n) has a normal presentation (4) of the form 
xi, x2, x3: r1, r2j where 

* Our K(p, n) is written K{p, 2nz) in [10]. 
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aX2 xi x4 a~'0 Xic~vo P~ao -Po~ a! = X2 X 1 X4 =1 0fXI Ci X.5 = Ci X2 C0 

-1 x- X= o X4 1 X = Po X #-Po 
HX4 3 X6 X X86= o7IP1IV 

-1 -n 

(4) 'Y=X6 X x8=7 XI Y 

6 = X2 X8 x= APO x2 5V-0 X10 = 8 x8 a 

-1 -1 x o xi e-o 
e- Xg x3 Xii~ xC e 

-1 - 
ri = X5 X10 r2 = X7 Xll 

Suppose for some fixed (p, n) that K(p, n) has a homomorphism 0 of order s on A6. 
Say that the elements aQ, j80, y0, 60, eO of A, have orders a, b, g, d, e, respectively. 
Let q be the l.c.m. of a, b, d, e, and let x, 0 = ri, i = 1, 2, 3. From (4) it is easy to see 
that the assignment xi = ri, i = 1, 2, 3, defines a homomorphism 4. of K(p', n') of 
order s on A5 whenever p _ p' (mod 2q) and n n' (mod g). Because K(p, 0) =0 we 
must have g > 2, and because K(O, n) = K(- 2, n) = 0 we must have 2q _ 6 (in fact 
2q is 30 or 60 in every case). We shall say that the homomorphisms 0 and 0 are in 
the same clan of homomorphisms 8. 

Because the numbers g and q for a clan of homomorphisms must be divisors of 
30, we know in advance that infinitely many KT knots have no. homomorphisms on 
A5. Clearly, the same difficulty will occur whatever finite (nonabelian) group G we 
may use in place of A6. Therefore, if we wish to resolve all the different types among 
the KT knots, we must either use an infinite group G or an infinite set of finite groups 
{G,,V= I,2,*..}. 

We can show however, that infinitely many of the knots K(p, n) are different by 
considering the homology groups Hjlch, HlMZh, h = 5, 6, associated with a clan of 
homomorphisms 8. We examined a number of these clans and found by looking 
at 10 to 40 cases that these homology groups can usually be predicted by simple 
formulas. We must admit we have not tried to prove these formulas-the groups 
are complicated and the presentation matrices are rather large. However the method 
of proof (a giant calculation!) is clear and the results stated below should be con- 
vincing as they are. (Sceptics might try a simpler case of a clan 8E where the knots 
are alternating torus knots.) We present our formulas for five cases which illustrate 
most of what we should expect. 

I. xi0 = (123), x28 = (123), x,0 = (145) when p = 2 (mod 30), n 1 (mod 3). 
Since K&, n) = K(p, -n), this clan also allows n _ 2 (mod 3), but using the standard 
normalization of 0 in its equivalence class we then write it xi 0 = (123), x20 = (145), 
X30 = (235). Whenp = 2 and n = 3s + 1: 

H1'L, = 0, 0, 0. HPjD5 7 7 + 24s1. Hlts =0, 0, 12. HMlZs = 1180 + 648s[. 

II. xI0 = (12345), x20 = (13254), X38 = (15324) when p 2 (mod 30), 
n _ 2 (mod 5). When n _ 3 (mod 5), we normalize 0 to x20 = (14523), X30 = (15324). 
(This clan is one of three clans of reps which exist for the same set of (p, n).) When 
p = 2 write n = 5s + 2, r = 2 if 11 4' s, = 22 if1 I s, 

Hi% = 0, 2, 18. HjW5 = 2, 90. H1jcU. 0, 0, O. H1,L6 11100 + 2616s1. 

III. x10 = (12)(34), X20 = (12)(35), X30 = (13)(25) when p -4 (mod 30), 
n I (mod 3). For n 2 (mod 3) we write x28 = (13)(24), x38 = (12)(35). When 
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p = 4, n = 3s + 1 and T = 178 + 240sl we get: 

HlL5= 0, 0, 0,T. HI1Z5=T. H1cBL = O, OO ,O ,2. HIW6 = 4. 

IV. x10 = (12)(34), x20 = (13)(24), X30 = (14)(25) when p 2 (mod 30), 
n 2 (mod 5). For n _ 3 (mod 5) we write X30 a (13)(25), X30 = (15)(34). When 
p = 2 the groups are: 

H1U5c= 0, 0, 0, 3. H15 = 3. H1 = OO, OSO. HI1 6 = 2. 

V. x10 = (123), x20 = (134), X30 = (135) when p -4 (mod 60), n -1 (mod 2). 
(This clan is one of four such which lie in pairs, the corresponding homology groups 
for the homomorphisms in a pair being the same.) When p = 4 write n = 2s + 1, 
p = 18 1s + I1, andletr = 9 if 31s, T = 3 if 3 4' s. Then: 

HiUt5 = O.,O ,O ,r. HI L5 = 2, p. 

Hial = 0, 0, a(s), b(s) where a(s) = 4r(s), b(s) = 1 when s is even, b(s) = 4 if 
s 1 (mod 4), and b(s) = 2 if s 3 3 (mod 4). HiS, = c(s), d(s), t(s) 
where c(s) = 3 if s is even, c(s) = 2, otherwise, and d(s) = 1 if s is even, d(s) = 3 * b(s) 
otherwise. The final summand t(s) varies so wildly that I cannot guess a formula for it. 

Table 1. The images x1 0, X20, X30 of the generators of a normal presentation on 
three generators for the equivalence classes of homomorphisms on A,. See Section 1 
for the [ ] notation. 

I. Order 5. x10 = [23451]. 28 combinations 

x20 = [35214] or [43152]. X30 = [23451], [51234], or one of 
[35214], [41532], [54213], [31524], [54132], 

[43152], [25413], [43521], [24153], [35421]. 

x20 = [23451] or [51234]. X30 = [35214] or [43152]. 

II. Order 3. xl0 = [23145]. 46 combinations 

x20 = [42351]. X30 = any 3-cycle. 

x20 = [24315] or [32415]. X30 = any 3-cycle which moves 5. 

X30 = [23145] or [31245]. X30 = [42351]. 

III. Order 2. xI0 = [21435]. 19 combinations 

x20 = [21543]. X30 = one of [35142], [32154], [34125], [42513], 

[45312], [52431]. 

x20 = [35142]. X30 = one of [21543], [21354], [34125], [32154], 

[43215], [45312], [53241], [52431], 

[14523], [15432]. 

x20 = [34125]. X30 = one of [21543], [35142], [45312]. 
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Stan, Ryra, ewd Gelberd recently $abliahed table. ot weight. 

m *ecieee for the eveluatiem by (.eusien qutdreture ot Integrals 

as tile f or: 

(1) fft(aeapt1s )da 

vhich onre In ducleer isactor deign celculet lna. Slelar integrals, 

except with e *fljjf vetghting fuictios w(x)f2s ep(-s ) rather 

them their Rolcm wett. oceut frequently in atomic *ed nloculer 

co11it4u pro*li Althouh thee integrale could be regtrded aa 

spectel efled of (1),0 better ceerge?ace L he eb ted trft 'uadratur. 
~1 

fetwle" explicitly tektag into eccomat the additional factor 23 as 

part ef the veight faction. TI61 I of this note givae absciosse end 

veihte for 1 polit C lasom qadrature, of the fre: 

(2) fawh ePl-2 )f(s~da 2 2~~~ 

Theewere obte in the usual W tfr ;h (nth nleaic) 

polyoslsla 13(x) orthogonal on (,O,') 0ith reapoct to w(z), 

f-weI? daf4t by tek I ?0(a)fl fud te f*olmtq aes"ttion 

for recursion 

(} *~~x (rn.X)P3(a) * R/| l(a) 

Of eawerol nericel tochaiquo in letigatod for determining 

thsee Polytel the N*o ufferit let troa lo*e of marical 


